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Stochastic resonance in a suspension of magnetic dipoles under shear flow
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We show that a magnetic dipole in a shear flow under the action of an oscillating magnetic field displays
stochastic resonance in the linear response regime. To this end, we compute the classical quantifiers of
stochastic resonance, i.e., the signal to noise ratio, the escape time distribution, and the mean first passage time.
We also discuss the limitations and role of the linear response theory in its applications to the theory of
stochastic resonance.
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I. INTRODUCTION weak applied fields the dipole does not exhibit BR]. In
the present case there is a new ingredient, absdiginthe

The dynamics of periodically driven stochastic systemspresence of the shear flow, which is the determinant for
has been an active field of research in recent ygHrsThis ~ many interesting aspects of the dynamics of this system. Ad-
kind of system arises frequently in the fields of physicsyditiona”y, although we show the existence of SR in the lin-
chemistry, and biology. Examples are found in problems in€ar regime, we discuss the limitations and role of LRT in its
volving transport at the cellular levgR, 3], optical and elec- application to the theory of SR, mainly related to questions
tronic deviceg4], and signal transduction in neuronal tissueconcerning the fluctuation-dissipation theorem.
[5,6], to cite just a few. The paper is organized as follows. In Sec. Il we analyze

A particularly interesting phenomenon, occurring in peri-the dynamics of a dipole in a shear flow and find the fixed
odically driven nonlinear noisy systems, is stochastic resopoints. Section Il is devoted to studying the response of the
nance(SR) [7]. This term refers to the enhancement of theSystem to an oscillating magnetic field by computing the
response of the system to a coherent signal when the integusceptibility. In Sec. IV we calculate the power spectrum
sity of the noise grows, instead of the degradation that on@nd the signal-to-noise ratio. In Sec. V we compute the es-
naively expects. The mechanism leading to this phenomenofape time distribution and from it the mean first passage
is quite simple. Imagine a system that exhibits an energetiime. Finally, in Sec. VI we discuss our results.
activation barrier. In the presence of noise, the system can be
assumed to surmount this barrier with a rate proportional to
e 2D whereAE is the height of the barrier arid is the
intensity of the noise acting on the system. The inverse of
this rate defines the average waiting tim@) between two We consider a dilute colloidal suspension of ferromag-
noise-induced transitions. In the presence of a periodic forcnetic dipolar spherical particles, with magnetic moment
ing, the height of the barrier is periodically raised and low- 5 5 ) ) .
ered. When the period of the external force synchronizes- MsR, whereR is a unit vector accounting for the orienta-
with 2T(D), the barrier surmounting will be enhanced by thetion of the dipole; the magnetic moment is therefore rigidly
cooperative effect of the noise and the periodic forcing. attached to the particles. Each dlpple is Ejnder the influence

Although originally proposed for systems in a double- of a shear flow with vorticitﬁ=2w02, with Z being the unit
well potential, this original scheme has been extended. Ijector along thez axis, and of an oscillating fieldH
fact, it is known that SR is exhibited by several classes of

a0ty itk 2 hei ; ;
monostable system, among which one might mention excit(-; He % ‘f’vt';]h X bsynglthe_ unit vecto(; %IO?E t?eﬁmsl. The
able and threshold systeni8—11] or systems that do not ynamics ot these dipoles IS governed by the following equa-

follow an activated dynamics but a relaxational dynamicstIon of motion:

II. DYNAMICS OF A DIPOLE IN A SHEAR FLOW:
FIXED POINTS AND THEIR STABILITY

[12,13.
In this paper we will show that a magnetic dipole im- dﬁp . 1. .
mersed in a shear flow exhibits stochastic resonance when a I —gp ~MXH+&(5Q-Qp ), 1)

weak oscillating magnetic field is acting on it. The presence
of this flow takes the system out of equilibrium causing cer-
tain peculiarities in the behavior of the system. In order towhere | is the moment of inertia of the particles;
treat this problem we will analyze the response of the systent 87702 is the rotational friction coefficienty, the sol-

in the linear regime. A previous study of the dynamics of avent viscosity, anda the radius of the particle. Fae> 7,
dipole under an oscillating magnetic field has revealed thawith 7.=1/¢, being the inertial time scale, the motion of the
linear response theorft RT) predicts a monotonically de- particle enters the overdamped regime. This time scale de-
creasing behavior for the ratio between the output signal anfines a cutoff frequency, = 7, *, such that the condition for
the output noise or signal-to-noise rat®NR), i.e., for very  overdamped motion is equivalent &< w, . In this case Eq.
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(1) yields the balance condition between the magnetic angyhere F5(t) is a Gaussian white noise of zero mean and

hydrodynamic torques acting on each particle, correlation function
- > 1. > = = ’ ’
m><H+§r(§Q—Qp o, @ (Fo(Fs(t) =2 ksT(L-). ©
The Fokker-Planck equation corresponding to EB).is
which, together with the rigid rotor evolution equation given by
dAﬁ > > 5 = 5
R G xR @ P (RO=[Lo+NOLIT(RY), (10

where £, and £, are operators defined by

leads to the dynamic equation e, - .
£0=—woz~R+ DrR y (11@

de 2 et = 3o~ oA s
gr = CotZHMO(RXXPXR. (4) L1=2woR-X— wo(RXX) R, (11b

Here X (t)=(mH/& wg)e ', with ﬁp being the angular with DerBT/ér being the rotational diffusion coefficient

velocity of the particle. andR = Rx d/4R the rotational operator. Notice that the first
The computation of the fixed points of E@) when the and second terms on the right hand side of 849 corre-
magnetic field is held constant, i.e\(t)=\,=const, and spond to convective and diffusive terms, respectively. More-
their linear stability analysis are given in detail in Appendix over, Eq.(10) which, according to Eq(8), rules the Brown-
A. After some algebra Eq4) becomes ian dynamics in the case of overdamped motion, is valid in
the diffusion regime. This regime is also characterized by the

dR . condition t>7,, or equivalentywo<w,, which implicitly
— =w[ZXR+AX—AR(R-X)]. (5)  involves the white noise assumption.. .
dt To solve the Fokker-Planck equati6t0) we will assume

that A\g=|\(t)| constitutes a small parameter such that this

ForAo=1, this equation has only a linearly stable station-eqyation can be solved perturbatively. Thus up to first order
ary state. The orientation of the suspended particles is fixe, '\ the solution of the Fokker-Planck equaticto) is
to

<o

Re=vVI—N 2%+A "1

This means that in this regime the hydrodynamic torque,
which tends to cause the rotation of the particles, is inSUfﬁHere\P (t,)ze(tuto)coq,o(tzt ) is the zero order solution
cient to overcome the magnetic torque, which maintains theig, - & 2 4 0
constant orientation. ’

For Ap<1, which is the case we are interested in, the ~ A A
particles undergo a rotation around a fixed axis lying in the VO(R,t=tg)=(R—Ry), (13
y-z plane, the director of this axis being given by

o t ,
©) ‘P(R,t)ze(“‘o)‘mlfo(to)Jrftdt’)\(t’)e(t‘t Yoo L Wo(t').
0
(12)

~ . with F?O being an arbitrary initial orientation. As follows

Re= = V1-A2y+\Z. (7)  from Eq.(11a, the unperturbed operatd}, is composed of

the operatorsR, and R 2, which are proportional to the or-

In this case the hydrodynamic torque is strong enough tdital angular momentum operators of quantum mechanjcs
andL?, respectively, and, therefore, their eigenfunctions are

make the dipole precess around the orientaﬁgm Eq. (7) the spherical harmonidd 4]

(see Appendix A

Ill. RESPONSE TO AN OSCILLATING MAGNETIC FIELD RzYim(R)=imY, n(R), (143

The analysis of Sec. Il was carried out for the determin-
istic dynamics of a magnetic dipole in a shear flow. Fluctua-
tions are introduced by means of a Brownian torque. The .
corresponding Langevin equation is Given that we know howR acts on the spherical harmon-
ics, it is convenient to expand the initial condition in series
of these functions, since the spherical harmonics constitute a

R2Y, (R)=—I(1+1)Y, (R). (14b)

d_ = wo )\(t)(EQX;Z) e L(ﬁx Fa(t) | X § (8)  complete set of functions that are a basis in the Hilbert space
dt &rwo of the integrable functions over the unit sphgté]:
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o |
PORt)=8R-R)=2 X Yin(Ro)Yim(R).
(15

Using this expansion in Eq12), for the first order correction
to the probability densitA V=W —W, we obtain

| ¢ R
> dt’A(t") Y, (Ro)

m=—1 Jtg

AV(RD=,
=0
x et~ 6t “t)koy, (R).  (16)

Notice that the integral oﬁ\If(Ifi,t) over the entire solid

angle is zero, in agreement with the fact that the unperturbed

solution ¥ o(R,t) is normalized.

Since we are interested in the asymptotic behavior we will

setty— —<o. In this limit, Eq. (12) becomes

5 1 t , ~ o~
\If(R,t)=E[1+f dt'n(t")e"f2R. X}, (17)
where now
> 1 t , ~ A
A\II(R,t)=Ef dt'a(t)et" 2R X, (18

and

YO(R 1) = 1 (19
41

is the uniform distribution function on the unit sphere.
From Eq.(18) the contribution of the ac field to the mean

value of the orientation vectd® can be obtained as

5 A a 1 [t Aa ) 5o~

R(t)= [ dRRAV = Ef dt'x(t')f dRRe(t"1)402R. X.
(20)

This equation can be written in the more compact form

ﬁei<t>=fﬁwdt'm’)xi(t—t'), (21)

where the response functi¢h6] has been defined as

1 A S
Xi(n)=7— f dRR;e™02R- X (22
for 7>0.

By causality, we can writé— o in the upper limit of the
integral in Eq.(21); hence, this equation becomes

Ri(t)=xi(@)\ (1), (23

where x;(w) is the generalized susceptibility, which is the wheret;>t,>- -

Fourier transform ofy;(7),
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oo

1 ) A LN
Xi(w)=ﬂ dre"”deRieTLOZR»?. (24)

From this equation we obtain the components of the suscep-
tibility:

)_} 2D, . (@~ w)
XX(w_3 4DZ+ (0 — wp)? I4Dr2+(w—wo)2
N 2D, (wo+ w)
AD?+ (w+ wg)? '4D§+(w+wo)2 ’
(25)
1 (wo— w) L 2D,
X(0)=3 AD2+ (w— wp)? '4D$+(w—w0)2
(wotw) 2D,
AD?+ (w+ wg)? '4D$+(w+w0)2 ’
(26)
Xz(@)=0. (27)

The quantitiesy, and x, have poles ab=* wy=2D,i. The
inverse of the imaginary part of these pole®(2 ! defines
the Brownian relaxation time.

IV. POWER SPECTRUM

In order to discern whether or not SR is present in the
relaxation process of the system under consideration we
compute the power spectrum, which, following the Wiener-
Khinchine theorem, is given by the Fourier transform of the
correlation functior{17,1]. Since we will take as output sig-

nal the projection oR parallel to the magnetic field, i.eR,,
we compute only the correlation function of this quantity.

The correlation function oR, is defined by
(RADR(t+7)|Ro(to))

=fd{7f 00,0, W (5,4:0,t+ 7| Ry to), (28)

where the initial condition is taken aB(ﬁ,to) = 5(I§— ﬁo).

The above quantity can be calculated from the solution of the
Fokker-Planck equation simply by recalling the following
properties of a Markov proce$&7]:

W(T1,t1; ... Untn)

=W(01,t)W(01,t1|02,t25 ... 30 tn),

W (U1,t|0p,t05 -+ 00, 1) =W (01,105,15).  (29)
->t,. By combination of these two prop-

erties Eq.(28) becomes
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(RUDR,(t+ 7| Ro(to))
=fd55xxp(5,t|§o,to)fdﬁaxxp(&,wﬂz},t).
(30

To proceed further, we compute first the integral Qwém
Eq. (30). From Eq.(12), if >0,

t+7

W (0,t+ 7)5,t) = e™08(i—7) + f ds(s)

t
X e(t+ T*S)Ltoﬁ lesﬁob*(a’_ l})

=W o(0,t+70,t) + AW (G,t+75,1);
(31

thus we have
J dﬁaxqf(&,twh},t):Jdﬁax\lro(&,twh},t)

+f dG0 AW (0,t+7]5,1).
(32)
The results of these integrals are

2

f A0V o(0,t+ 7], =~ \/F e @07y (v)

+e~ (2Dr+iw0)TY

L)),
(339

fdfjaxuf(&,wﬂé,t)
(v)JHTdS)\(S)f di

1[ {[e (2D, —iwg)(t+7— S)Y ( )

+ e—(zorﬂwo)(wT—s)Yl_l(ﬁ)]e—uu+1)Dr+imwo]s

X L1 Y m(0)}. (33h)

(for the detailed derivation, see Appendiy.B
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first order term vanishes, and consequently we do not worry
about it and compute only those whose average gives a non-
zero contribution, i.e., the zeroth and second order terms.
Takmg this into account, and by applying E¢l2) to

‘I’(U t|Ro to),
(Ry(DR(t+ )| Ro(to))

- j d5 j 4005, W o (5.t Ry to) Wo( Gt + 7].0)

+jd{7f 00,0, AW (5,1 Ry, to) AW (.t + 7/5,1),
(34

where the sign- indicates that the terms which vanish after
averaging over the period of the driving have been neglected
(although the average has not been performed )Aa‘ter

introducing the corresponding expressmns‘io(rv t|Ro,to)
and by using Eq(33) we obtain
2m\3
) NA(t)

(39

4 2
(Ry()R(t+ 7))~ ( )Ze 2Dr7 cog woT) +

f dt/eiwt'xx
0

(the details of this computation are given in Appendix B
where we have defined

eia)r

« « 1 A ~ ~
(RAOR(t+ )= 5 [ dRGR(OR 1+ [Rolto).
(36)

At this stage, and before applying the Fourier transform to
the correlation function to obtain the power spectrum of the

processR,(t), we average Eq35) to obtain

Y~ A~ w 27w ~ A~
RADR(7) = 5= | " atR DR+ 7)

2

A
2e %P7 coq wqT)

3

2

2m s 2 0T ” ’ aiot’ ’
+ ? Ag€ dt’ e x,(t")
0

(37

After introducing these expressions into E§0) we ob-
tain three terms corresponding to an expansion of the corre- This computation has been carried out with the assump-
lation function in powers ok (t), of zeroth, first, and second tion thatr is a positive quantity. To extend our computation
order, respectively. The presence of this driving yields arto <0 we have to use the backward Fokker-Planck equa-
explicit dependence of the correlation function on the time tion. The operator that generates the backward evolution of
instead of its depending only on the time difference, as octhe probability distribution is- £ [18], £ being the Fokker-
curs in the stationary case. The method for removing thi®lanck operator and. ' its adjoint operator. Consequently
dependence on the initial time is to average the correlatiothe formal solution of the backward Fokker-Planck, equiva-
function over a period of the drivindL]. After doing this the lent to Eq.(12), is given by (<t)

041112-4
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0.75

=~  _~ 4 2 2D
(RY(R(t+7))= 3 2e°°r 7 coq wgT)
2m\3 . o o 2

. o5} + ?> )\(z)e"‘"f dt’e't y,(t")
£ 0
>
X (40
'
2:"' 025} for 7<0.

We now apply to this averaged correlation functioow
defined for —wo<r<) the Wiener-Khinchine theorem,
which states that the power spectrum and the correlation

0, o . o ., function are related through a Fourier transform. Thus,
’ pe”’ '
FIG. 1. Signal-to-noise ratio as a function of the inverse of the Q(Q):f d7(Re(t)Ry(t+ 7)€"
Peclet number Pel=D, /w,. We have represented nondimensional o
quantities. =N(Q)+S(w)5(Q—w), (419
P(Rt)=e ("0LowOt,) o) (477)2 2D, 2D,
= — —+ ,
t L 3/ [4D?+(Q+wp)? 4D?+(Q— wg)?
+f dt'\(t)e Do wO(t"). (39) (41b)
to
3
As in the case of the operatdy, the spherical harmonics are _ ( 2m\° , 2
=l—] A . 41¢
eigenfunctions of—ﬁg with eigenvalues given by S() 3 olxx(@)] (419
_EgYIm(Aﬁ):[I(I+1)Dr_imw0]Ylm(|3)- (39) Since our purpose is to discern whether or not SR is

present in the relaxation process of the quarﬁut), we
Thus the process to follow in the calculation of the correla-proceed to compute the signal-to-noise rd&jd.e., the ratio
tion function for <0 is identical to the corresponding com- between the weight of thé function in Eqg.(4189 and the
putation for>0 but changing the eigenvalues of the opera-noisy part ofQ({)) computed at the frequency of the driv-

tor £, to those of— £, which yields ing. From Eqs(25) and (41) we achieve
S(w) ,6
"N M

><{2Dr I[AD?+ (w+ wg)?]+ 2D, /[ 4D%+ (0 — o) ? ]} +{(w+ wo)[[4D?+ (0 + wo)?] + (0 — wo) [[4D?+ (0 — wg)?]}?
2D, /[4D?+ (w+ wg)?]+ 2D, /[4D2+ (0 — wg)?] '
(42

This quantity has been plotted in Fig. 1 as a function of thenent at the signal frequency. This fact causes the SNR to go
inverse of the Pelet number Pel=D, /w,, which measures  to infinity in the zero noise limif19].

the ratio between the time scales associated with diffusion

(thermal noisgand flow. The presence of a maximumHmn V. MEAN FIRST PASSAGE TIME

for a nonzero value of this parameter shows the existence of

stochastic resonance in the relaxation process of a dipole in a In this section we study the behavior of the escape time
shear flow. In addition to the slow relaxation to the singledistribution and the mean first passage time of the magnetic
attractor of the dynamics, our model includes another effectdipole immersed in a shear flow. To this end, we have to
which hides, to some extent, the SR profile. To understandccount for the fixed point orientations of Hd) in the case
this, note that even though the signal is too weak, it neverAo<1. In this situation there is a single fixed point corre-
theless causes the position of the attractor of the dynamics &ponding to an orientation contained in the placxe0 or,
vary, and so the output will always have a nonzero compoequivalently,¢p= m/2. However, when\(t)>0 this station-
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ary orientation is in the subspage-0 (cos6>0) and in the +m=2n+1 reduces to keeping only the odd valued.olin

subspace<0 (cosf#<O0) if A(t)<0. Therefore, we are go- addition, we are interested only in the modes with greater
ing to study the escape from the regibr 0 (cos#>0) as-  relaxation times. Therefore, from the whole series &)
suming that the initial orientation of the dipole is containedwe are interested only in the terb&=1, m=0. Thus, our
in this region. Consequently, we have to solve the Fokkerpurpose is to obtain the coefficieaf(t) up to first order in

Planck equatior{10) with absorbing boundary conditions in ) (t) from Egs.(10) and(43). Up to zeroth order, we have
the plane co$=0[20,21], i.e.,

picosrmRa =0 “ alg(t)=e 221y o(Ry). (48)
Since this escape problem will be treated perturbatively,

the first step is to analyze the eigenvalue problem of the

operatorL, [Eq. (11)] under the boundary conditio@3). It Obtaining the first order contributiora(l%))(t) requires

is easy to check that the eigenfunctions and the eigenvaluesmmewhat more elaborate calculation. To proceed further

are the same with the restriction that only those spherical . . . . =

harmonics that vanish at cés-0 are solutions of this eigen- W'th this computation, the operatat, acting onYin(R)

. ; , ields

value problem. From the parity properties of the associated

Legendre function$15], one can see that E¢43) selects

only the spherical harmonics such tHatm=2n+1 with

_ ~ 2 ~ o 5
N=0.1,....Thus, we have £1Yin(R)= =200\ S1Y0(R)+ Y1 1(R)]Yim(R)

41 2
?Ylo( RIR,
where(l,m) denotes that the sum is carried out ovexl0

2 . 5 -~
<o and —l=ms=l restricted byl + m=2n+1. —in /—W[Yll( R)—Y1-1(R) IR, |Yim(R),
In order to evaluate the mean first passage tiMEPT), 3

VRY= D am®)Yim(R), (44)
(I, m)y — Wp

we have to compute first the survival probabil'@jﬁo,t) (49
and the escape time distributid&TD), which are related
through ~
. where the action o2, on Y,,(R) is given by Eq.(14a and
5 d S(Ry,t)
p(R01t):_T1 (45)

5 1 5
o RyYim(R)=—={J(l—m)(I+m+1)Y R
whereS(Ry,t) is defined by yYim(R) 2{\/( 3 Yim2(R)

StRo.)= | dRw(R Ry ~F MM DY 4R}, (50

2T 1 ~ . )

:J dd’J d(cosh)W(cosd, b t|Ry), (46 FTOM Eqgs.(49) and (50) together with the rules for the ad
0 0 dition of angular momenta familiar from quantum mechanics

. . . _ [14] and the selection rulé+m=2n+1 imposed by the
with R the region from which we are studying the escapepoundary conditior(43), one can deduce that only the term

problem(in the present case c65-0), andR, e R the initial v, (R) contributes taa{})(t). The rules of addition of an-
orleAntatAlon of the dipole. The probability distribution gular momenta imply that the product of two spherical har-
\lf(li,t||§o) is obtained from Eq(12) with the boundary con- monicsY,,Y 4 has a projection onto a third spherical har-
ditions (43) and the initial condition monic Y,s only whenm+qg=s. On the other hand, these
same rules impose the restriction that the proddgtY
\If(fz,t=0)= 5(6{_ ﬁo)z D Yrm(lso)Ylm(Eé)- (47) prc_)jects only onto ;ubspaces such thatp|<r=I+p. By
@m) using these restrictions one can see that when one takes

) . . . =1 andm=0 in Eq. (49 one obtains a vanishing contribu-
Before proceeding to obtain the survival probability, thereyio, and only wherl =2 andm=+1 is the contribution to

are some fapts to consider that will facilitate further compu-a(l%))(t) different from zero. All other contribution of higher
tation. Looking at Eq.(46), one can see that, due to the

) ; . ; valuesl are explicitly excluded by the rulg—p|<r=<I+p.
integration over the azimuthal angle, only terms witk- 0 Taking these considerations into account and by using the

contribute toS(ﬁO,t). Consequently, the selection rule results

041112-6
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3 ~ ~
). T f d(cos6)Y14(R) Y- 1(R)Y1(R)
9 [5
=507 V3
3 ~ ~
). T f d(cos6)Y1_1(R)You(R)Y1o(R)
9 [5
=807 V3
3
| do [ dicosn) V.o RV R VR
3 [5
=507 Vanr ®D)

we obtain the first order correction to the coefficiany(t):

N 15
wo4g Vi (\/— 2\/—)
4D, +i(w— wp)
16Dr2+(w—w0)2

4D, +i(w+ wp)
16D2+ (w+ wg)?

al(t) =
X{ Yol I30)

+Y,_1(Ro)

] . (52

Equations(48) and (52) together with Eqs(44) and (46)

allows us to obtain the survival probabili§(R,,t), which is
given by

p(Ro,t)=e 201!

2D, +i(w—wq)

| Yau(R
[ 21( 0)16Dr2+(w—

/3 . /
2D, EYlO(R) 0 1 40 e

PHYSICAL REVIEW E 63 041112

5 [3 - [15( /2
S(Ro,t)=m EYlo(Ro)esz’t % ( 2\/—)

- t .
X{YZl(RO)e_ZDrt f drn(r)e” (“PrHiedr
0

> t :
+Y2,1(Ro)e’2Dr‘f drn(r)e” (“PrTied)
0
(53)
This quantity is directly related to the MFPT, since

T(EEO)=f:dttp(ﬁo,t)zf:dtS(E”zo,t), (54)

where we have used E5). Consequently, the MFPT is
given by

T( Ro) Tol Ro) +AT( Ro)

/ \/1 A2
To(Ro) ™N 1, :
N5 [15(\2
20V a7 (2 +N§)
[5] (0w
X3wo 2477116Dr2+(w—w0)2

N (w+ wp)
16D%+ (w+ w)?

AT(Ro)=To| 70

: (59

where we have takeR,=R;. In Fig. 2 we have plotted the
quantity AT/T,. The figure shows that this quantity exhibits
a minimum, as required for the appearance of SR.

The knowledge of the survival probability allows us to

obtain the ETDp(Iio,t). From Egs(45) and(53) the ETD is
given by

52,
2

e

s 2D, +i(w+wp) [15( 2
0?2 Yz-a 0}16Dr2+(w+w0)2]+)\040 4_(7 ﬁ)

X{YZI( ﬁo)e7[4Dr+i(w7w0)]tY27l( ﬁo)e7[4Dr+i(w+ wo)]t}‘| (56)

By taking ﬁoz Iis, we finally obtain

2Dt wo)\o

2D, 1—>\0

(w—wg)

ﬁ(fuf){

e~ 4Dt

{sin (w— wg)t]+sin (w+ wg)t]}

- +
16D2+ (w— wg)?

(w+ wgp)
) (57)

16D2+ (w+ wg)?
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FIG. 2. Mean first passage "'?“? as a function of the_parameter FIG. 3. Escape time distribution for a dipole in a shear flow
a=wl/wy. The presence of a minimum reveals the existence of

stochastic resonance. Pe=D, /w,=0.08. We have represented upder an oscillating magnetic field. Thg succession qf maxima is a
. . i signature of the presence of stochastic resonance in this system.
nondimensional quantities.

Pe '=D,/wy=0.08 and a=w/w,=0.7. We have represented

whereAp=p—pg, po being the corresponding ETD when nondimensional quantities.

the amplitude of the oscillating field is set to zero. [9,10]. Due to the presence of noise, the dipole can eventu-
The succession of maxima in the ETBee Fig. 3indi-  ally acquire enough energy to get out from its stable orien-
cates that the dynamics of a magnetic dipole suspended intation by crossing the absorbing barriéthe threshold
shear flow under a periodic field exhibits SR. cos6é=0. After this, the system is driven to its stable posi-
tion. This process produces a short spike in the magnetiza-
VI. DISCUSSION tion. Of course, the time that the system takes to return to the

fixed point has to be smaller than the semiperiod of the os-

We have shown that the relaxation process of a dipoleillating magnetic field. Thus, SR in this system can be un-
immersed in a shear flow exhibits SR upon application of aderstood in the same way as, for example, the SR in level
weak periodic field. To this end we have computed threecrossing detectors].
quantities typically used to characterize SR, namely, the LRT has been one of the most widely used tools in the
signal-to-noise ratio, the escape time distribution, and thétudy of stochastic resonanf22]. When the system is in
mean first passage time. All of them behave as expected fdpermal equilibrium in the absence of the external periodic
a process in which SR occurs. force, a very adequate way of qle_s_crlblng s_tochastlc reso-

Previous work devoted to analyzing whether or not SR ig?@nce is in terms of the suscept|b|_llty. _Thls is because the
present in the relaxation process of an overdamped dipole A0Sy part of the power spectrum is given directly by the
a fluid at rest has shown that this phenomenon does not occ8FSceptibility through the fluctuation-dissipation theorem,
in the linear regimg13]. Effectively, linear response theory Q
predicts a maximum in the signal, i.e., in the susceptibility, Imx(Q)= EN(Q)' (58)
as a function of the noise level. However, the SNR decreases r
monotonically with the noise level. This behavior can be
easily understood. In the limit of zero noise the output of the
system has a small compondiptroportional to the applied
field) at the frequency of the signal whereas the background
noise vanishes at zero noise level, this behavior being re-
sponsible for the monotonic dependence of the SNR on the
noise intensity.

In our case, the situation is completely different. When
the fluid in which the dipole is suspended is submitted to a
pure rotation(vortex flow), both output signal and output
background noise exhibit a peak at the same valug,dkee
Fig. 4. Consequently, although the background noise van-
ishes wherD, goes to zero, the characteristic SR profile of ‘ .
the SNR cannot be completely hidden, as shown in Fig. 1. 0 05 1,

This feature arises as a consequence of the presence of shear Pe
acting on the suspension; thus, the appearance of SR in the F|G. 4. Output signal and output background signal as functions
system studied in this paper is a nonequilibrium feature.  of the inverse of the Réet number. Solid line represents the quan-

In a sense, the mechanism yielding SR in this system isity S(Pe ')wo/\3 whereas dashed line represehtéPe ). We
similar to the one operating in SR in threshold deviceshave takenv=0.1. We have represented nondimensional quantities.

1.5 2
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4 ' : . Lo 2
From this equation, and taking into account tfa{ =1, we

obtain that the stationary orientation is

Re=* V1—hg X+ ly. (A2)

This solution exists only wheihy=1 and corresponds to a
fixed orientation of the dipoles, given that the intensity of the
magnetic field is high enough to maintain this fixed direc-
tion.

ol The second possibility leads to

ZX Re= — Ag(ReX X) X Re= — N[ X— (X- RIR¢]. (A3)

0 1 ) Equation(A3) provides two equations for three unknowns. If
o one setsR,=0 one recovers EqA2). If, by contrast one
FIG. 5. Comparison between the imaginary part of the suscepmakeslslxzo then a different stationary orientation is ob-
tibility of the signal R, (solid line) and the noisy part of the spec- tained,
trum computed from the Fokker-Planck equatiashed ling N N
Eeesl= D, /wo=0.08. We have represented nondimensional quanti- Re=\gy = \/ﬁgi (A4)
which exists only whemy=<1. This orientation gives rise to

This result is correct when the fluctuations whose spectrah rotation of the dipoles with angular velocity

density is given byN({2) have the thermal equilibrium state .

as reference stafd.6). Q= wo 1N V1-NZZ+ Ny}, (A5)
However, in the present case we are dealing with a system

that is maintained in an out-of-equilibrium steady state duesince, in this case, the field is not strong enough to inhibit the

to the presence of a shear flow. It is evident from Fig. 5rotation caused by the shear flow.

where we have plotted the imaginary part of the susceptibil- The linear stability of these fixed points is better analyzed

ity corresponding td&}, and the noisy part of the power spec- In spherical coordinates. Taking into account that
trum, that these two quantities are clearly different. Note A a A e aa
that, if wg=0, i.e., the system in the absence of the periodic (RXX)XR=X—R(R-
field is in equmbrlum the relatiori58) is fulfilled. Thus we

have shown that, although we can define a susceptibility thave obtain

describes the response of our system to a small perturbation, .

we cannot describe SR by means of LRT. The reason can be 1 dRy

%), (A6)

- 52y _

found in the fact that due to the nonequilibrium nature of the w_o dt o(1-R)—Ry,

attractor of the dynamics the fluctuation-dissipation theorem

fails to be valid. 1 dR
— Y= \RR,+R (A7)
wo dt Yoo
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APPENDIX A: LINEAR STABILITY ANALYSIS 1 d¢ .
— —— =M\ C0S# COS,
OF THE FIXED POINTS OF EQ. (4) wq dt
From Eqgs.(3) and(4) one can see that the t|me derivative 1 de sing (A8)
of R vanishes either Wheﬁ =0 orwhenQ xR=0. In the w_oaz_}‘o sing L

first case we have

where # and ¢ are the polar and azimuthal angles, respec-
A . tively. By linearization of Eqs(A8) around thex =1 fixed

O p=wo{Z+ No(RXX)}=0=7= —\oReXX. (A1)  points we obtain the matrix
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12 and therefore Eq(B2) reads
)\O 277- ~ . ~
A()\o>1)= 1 5 | Il:_ A l?f da[ef(ZDrflwo)rYll(G)
0 FAo\/1 ()\—)
’ (A9) +e @ty ((4)]8(0—0)
which implies that, if\y is positive, the orientation corre- 2 @D ey (3 (2D, +iwg) -
sponding to chosing the sigh in Eq. (A2) is stable, while ==\ gle T Y y(0) Fe e, 4 (0)],
the other one is unstable.
The same linearization procedure carried out around the (BS)

A<1 fixed points leads to leading to Eq.(33a. In Eq. (B5) we have used the relation

0 N3V1—)\} P
<b= : ~ ~ ~
AR=DZ| _ziiz o (A10) b=\ S Ya@+Ysa@]. (86)
The eigenvalues of this matrix are given by To compute the integrdl, we have to use the following
e ii)\oz\/ﬁg. (A11) representation of thé function:
o0 |
APPENDIX B: COMPUTATION OF EQS. (33) AND (35) 5(5—17)=|ZO 2 Yim(@)Ym(0). (B7)

In this Appendix we work out in detail some steps of the i . . o )
computation of the power spectrum corresponding to the reAfter introducing this expression into EB1c) we obtain
laxation process of a dipole under an oscillating magnetic o t
field in a shear flow; in particular, we calculate the integrals _ * > f o f 2 (trr-s)clt
that yield Eqs(33) and(35). From Eqgs.(31) and(32), 2 ;0 m§_| Yim(©) t dsi(s) | du(e o)

A . . .
f dau, W (d,t+rlo,t)=1,+1,, (B1a) X L 1€%70Y (1)
o
. R R = > Yl*m({;)f”Tds)\(s)e—[m+1)D,+imw0]s
I,=| diu,Wo(d,t+7v,t)= [ diue™es(i—70), =0 m=—I t
Blb A . A
(B1b) Xf da(e T IL00,) LY (), (B8)

and, by using Eq(B6), Eq. (B8) yields Eq.(33), i.e.,

A t+7 A A
= dauxf ds(s)etT 9% eSLos(i—v). om ! o (47
: l=—\732 2 Yrmw)f ds(s)
(BlC) =0 m=-1 t
To begin with we focus on the integryy, which can be Xf d[j{[e—(ZDr—iwo)(Hr—s)yll([j)
rewritten as

~ T’\ ~ ~ _ . _ ’;

1= f du(eou,) 8(G—0), (B2) e Bt TSy, ()

where£ ] is the adjoint operator of, defined by x e HIFDbrImedls sy, ()} (B9)

- s Once these expressions have been obtained we can com-
f dﬁA(ﬁoB)IJ du(L,A)B (B3)  pute the correlation function given by E@4),

with A and B two arbitrary observables. Explicitlﬁg is . . N an A oA
given by (Ru(DR(t+ T)|Ro(to)>”f dov,Wo(0,t|Ro,to) 1

t_ 5 3 2 -

= . + ~ A ~ >
Lo=®oRoR+D/R7, +f 459, AW (5,t|Ro to)
LY im(R=[~1(14+1)D, +iwem]Y|y(R),  (B4) (B10)
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Ao Ao . . the average of the correlation function over initial condition
Wo(5,t|Ro,to) and AW (5,t|Ry,ts) being given by verag on function over it Hons

is given by
W o(5,t|Ro) = 408(5 — Ro) (RUADR(t+7))~13+14, (B133
o |
:ZO =24 Yl*m(ﬁo)e*[l(l+1)Dr+imwo]tY|m(17), | 3= if dl%lA) ly, (B13b)
-~ ~ t ~ ~
W(7,t|Rg) = fodr A(r)et=NboL e o855 — Ry) = J_ doo f dr A(r)etDLoL, Y o)1,
. (B130
* 2 t
:IZEO m:E_I Yim(Ro) jodr A(T) After introducing Eqs(B5) and (B6) into (B13b), we obtain
x @~ [+ 1D +imaglrg(t=1)Lo oy > , 1 ~2m - -
1Yin(0) |3:E dUT[Yll(U)_FYlfl(U)]
(B11)
where the initial timet, has been fixed to zero and H&R7) x[e”@Pr-iwory, () + e~ (Prtieory, | (5)]
has been used. 4
Equations(B11) provide the evolution of the probability _ T —2D,r
distribution under the condition of the system being initially 9 € Co% wor), (B14)

in the stateRo. Sincea priori nottnng is known about this where the orthogonality relation for the spherical harmonics,

initial condition, we assume thaio is a random variable
uniformly distributed over the orientation space; conse-

. ; Lo 47 (I+m)!
quently we average the correlation function over the distri- f doy* q(v Ylm(v) 8,p0m.q
bution of initial state§Eq. (36)]. Taking into account that 21+1 (I-m)! ®15
1 > > has been used. On the other hand, from E@9) and
— * = ) ’
yps f dRy Y}, (Ro) = &8 08m.o, (B12 (53,
t t+7 ~ ~ ~ . ~
} 2 > [larnn [asnes) [ @i tva@ e va e v G
=0 m=-1J0 t
+e~ (2D, +iwg) (t— r)Yl 1(0)]Y (U)J du{[e (2D, —iwg) (t+ 17— S)Y (u)+e (2D, +iwg) (t+7— S)Y ( )]
Xe[I(I+1)Dr+imw0]S£lYIm(a)]_ (B16)

Let us focus our attention on the integral over

f o[ Y11(0) + Y1_1(0)[e” B 100Dy y(5) + e~ FOrHied -0y, (5) 1Y} (5)
f doY1(5)e” 1oty v (5) + J d5Y;_1(0)e” COrtiet=0yY, _(5)Yh(0)

J'dUYl 1(U)e (2D ~iwo)(t= r)Yll(U)Y (U)+deY11(U)e (2D +Hiw)(t=r)y, 1(U)Y (U) (B17)
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From the rules of addition of angular momenta familiar 27\3 rt D i _—
from quantum mechanics, which imply that the product of 14=| - J dr \(r){e (@Prie0(t=0) 4 g (2DrHleg) (=0}
two spherical harmonic¥,,Y,s has a nonvanishing projec- 0

tion over a third spherical harmoni,, only when the rela- t+r ,

tions |p—r|<I<r+p andq+s=m are fulfilled, it is easy XJ ds\(s){e”(Prieo(tr7=9)

to see that these integrals will give a nonzero result only ‘

whenl|=0,1,2[14]. In addition, for the integrals containing +e~ (@DrHiog)trr=s) (B18)

the productsYlil(z})Yltl(z}) the parametem has to be

m=*£2 whereas it must ben=0 for the integrals with , . L
- - ) o Finally, performing the changes of variables=t—r and
Y1+1(0)Y11(0) to yield a nonzero contribution. However, v—¢{ -~ 5 and using Eq(25) we obtain

although these integrals give a nonvanishing contribution in
principle, note that when we perform the integral over the

variabled in Eq. (B16) the terms introduced by these con- | _(2_77) 3)\2(t)e‘i‘”(f
tributions finally yield, by the orthogonality property of the 4 3

spherical harmonics, a vanishing result. Thus, dshd and

m=0 contributes td ;. Taking this into account and using

o 2
dt e‘i“",\/x(t)) . (B19
0

Eq. (B15), In this integral the upper limit goes to infinity by causality.
[1] P. Jung, Phys. Re[234, 175(1993. (1993.
[2] M.O. Magnasco, Phys. Rev. Leftl, 1477(1993. [13] J.M.G. Vilar, A. Peez-Madrid, and J.M. RubiPhys. Rev. E
[3] R. Dean Astumian, Scienc/6, 917 (1997). 54, 6929(1996.
[4] B. McNamara, K. Wiesenfeld, and R. Roy, Phys. Rev. Lett.[14] J.J. SakuraiModern Quantum Mechanic\ddison-Wesley,
60, 2626(1988. Reading, MA, 1985
[5] A. Longtin, J. Stat. Physz0, 309(1993. [15] R. Courant and D. HilbertMethods of Mathematical Physics
[6] J.M.G. Vilar, R.V. Soleand J.M. RuhiPhys. Rev. 59, 5920 (Interscience Publishers, New York, 196®0l. I.
(1999. [16] P.M.V. Resibois and M. de LeeneGlassical Kinetic Theory
[7] L. Gammaitoni, P. Haggi, P. Jung, and F. Marchesoni, Rev. of Fluids (Wiley, New York, 1977.
Mod. Phys.70, 223(1998. [17] N. Van Kampen Stochastic Processes in Physics and Chem-
[8] K. Wiesenfeld, D. Pierson, E. Pantazelou, C. Dames, and F. istry (North-Holland, Amsterdam, 1992
Moss, Phys. Rev. Letf72, 2125(1994). [18] H. Risken, The Fokker-Planck Equatior{Springer-Verlag,
[9] Z. Gingl, L.B. Kiss, and F. Moss, Europhys. Lef29, 191 Berlin, 19849.
(1995. [19] K. Wiesenfeld and F. Jaramillo, ChaBs539 (1998.
[10] F. Chapeau-Blondeau and X. Godivier, Phys. Re%5E1478 [20] G.H. Weiss, Adv. Chem. Phy&3, 1 (1967.
(1997. [21] J.E. Fletcher, S. Havlin, and G.H. Weiss, J. Stat. PB§s215
[11] J.M.G. Vilar, G. Gomila, and J.M. RGpPhys. Rev. Lett81, (1988.
14 (1998. [22] M.l. Dykman, D.G. Luchinsky, R. Manella, P.V.E. McClin-
[12] M.l. Dykman, D.G. Luchinsky, R. Manella, P.V.E. McClin- tock, N.D. Stein, and N.G. Stocks, Nuovo Cimentdl) 661
tock, N.D. Stein, and N.G. Stocks, J. Stat. Phy®, 479 (1995.

041112-12



